Abstract

The problem of classification of hyperspectral images containing mixed pixels is addressed. Hyperspectral imaging is a continuously growing area of remote sensing applications. The wide spectral range of such imagery, providing a very high spectral resolution, allows to detect and classify surfaces and chemical elements of the observed image. The main problem of hyperspectral data is the (relatively) low spatial resolution, which can vary from a few to tens of meters. Many factors make the spatial resolution one of the most expensive and hardest to improve in imaging systems. For classification, the major problem caused by low spatial resolution are the mixed pixels, i.e., parts of the image where more than one land cover map lie in the same pixel. In this paper, we propose a method to address the problem of mixed pixels and to obtain a finer spatial resolution of the land cover classification maps. The method exploits the advantages of both soft classification techniques and spectral unmixing algorithms, in order to determine the fractional abundances of the classes at a sub-pixel scale. Spatial regularization by simulated annealing is finally performed to spatially locate the obtained classes. Experiments carried out on synthetic real data sets show excellent results both from a qualitative and quantitative point of view.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.