Abstract
In the book of R.M. Christensen, “Introduction to the Mechanics of Composites” (1982), a calculation formula is given for the bulk module of polydisperse composites with spherical inclusions. This formula has been known to the Russianspeaking reader for almost 40 years, but unfortunately, it is not used in the practice of building materials science. To identify applied possibilities, R.M. Christensen's formula is modified and reduced to a dimensionless function k = k ( w , η, θ), which depends on three dimensionless parameters, i.e., it depends on three quantities: w is the volume fraction of the inclusion, η - the ratio of the shear modulus of the matrix material to the volume modulus of the same matrix, θ is the ratio of the volume moduli of the matrix materials and inclusion. Numerical studies of this function reveal that in two-phase granular composites, the range of effective moduli is significantly narrowed compared to the region limited by Voigt and Reuss estimates (in the sense of the upper and lower bounds of real values). At the same time, the lower Christensen score is the same as the Reuss score. Numerical and graphically presented results are given on the examples of the study of two characteristic groups of composite materials. In addition, the dimensionless form of the effective module allows to construct a system of visual graphic dependencies of the functions k ( w ) in a flat space k - w . For different values of θ, the function k = k ( w , η) displays a bunch of curved segments, which sets the position of the plane figure in flat space. Examples of constructing figures for characteristic regions of the values of the function k (η, θ, w ) are given.
Highlights
a calculation formula is given for the bulk module of polydisperse composites
This formula has been known to the Russianspeaking reader for almost 40 years
it is not used in the practice of building materials science
Summary
Национальный исследовательский Мордовский государственный университет имени Н.П. Огарева, Российская Федерация, 430005, Саранск, ул. Ключевые слова: двухфазная модель зернистого композита; сферическая форма фаз матрицы и заполнителя; эффективный объемный модуль упругости композита; вилка Фойгта – Рейсса для эффективного модуля. 2, б), то в результате получим (снова без выкладок) формулу для вычисления величины безразмерного эффективного модуля двухфазного композита: k. При этом обратная формула для вычисления эффективного объемного модуля K примет вид. В такой форме Кристенсеном с учетом парадигмы Хашина [19] получена формула для вычисления величины объемного модуля упругости (K) в полидисперсных композитах со сферическим включением (заполнителем). Анализ решения Кристенсена [6], представленного формулами [4], [7] и [8], позволяет уточнить данное правило (в смысле верхней и нижней оценки вилки Фойгта – Рейсса) применительно к двухфазной структуре зернистых СКМ. Но сначала выразим модули KФ и KР в долях от модуля Kм (матрицы) и получим формулы для безразмерных величин тех же модулей: kФ
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have