Abstract
The accurate description of the interaction of a quantum system with its environment is a challenging problem ubiquitous across all areas of physics and lies at the foundation of quantum mechanics theory. Here, we pioneer a new strategy to create discrete low-rank models of the system-environment interaction, by exploiting the frequency and time domain information encoded in the fluctuation-dissipation relation connecting the system-bath correlation function and the spectral density. We demonstrate the effectiveness of our methodology by combining it with tensor-network methodologies and simulating the quantum dynamics of complex excitonic systems in a highly structured bosonic environment. The new modeling framework sets the basis for a leap in the analysis of open quantum systems, providing controlled accuracy at significantly reduced computational costs, with benefits in all connected research areas.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have