Abstract
A three-dimensional finite element-discrete element model of an ice sheet is presented. The model consists of an in-plane beam lattice of co-rotational, viscously damped Timoshenko beam finite elements connected with the mass centroids of rigid discrete elements that form the actual ice sheet. A sheet is generated and meshed via a centroidal Voronoi tessellation procedure. Due to the internally damped, lattice-based construction, the mechanical response becomes both strain rate- and size-dependent, the examination of which forms a central part of the present study. Four displacement-controlled, in-plane, constitutive tests are thus performed to compute the effective, quasi-static, in-plane Young’s (in tension and compression); shear (in simple shear); and bulk (in equi-biaxial tension) moduli E,G, and K, respectively, of a modelled ice sheet. Examined is a set of square, self-similar (plan view) ice sheet samples with the side lengths of L=10, 20, 40, 80, and 160 m; thicknesses of h=0.5, 1.0, and 1.5 m; and the discrete element sizes of l=2h and 3h. The moduli are computed as functions of a relative sheet size parameter Lrel (Lrel=L/l) and the applied strain rate. The results indicate that the samples exhibit a moderately strong size dependence, whereas the strain rate has only a minor effect. In each test the size effect approximately vanishes if the relative sheet size parameter Lrel⪆25.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.