Abstract

Rapid diagnosis and targeted drug treatment require agents that possess multiple functions. Nanomaterials that facilitate optical imaging and direct drug delivery have shown great promise for effective cancer treatment. In this study, we first modified near-infrared fluorescent indium phosphide quantum dots (InP QDs) with a vascular endothelial growth factor receptor 2 (VEGFR2) monoclonal antibody to afford targeted drug delivery function. Then, a miR-92a inhibitor, an antisense microRNA that enhances the expression of tumor suppressor p63, was attached to the VEGFR2-InP QDs via electrostatic interactions. The functionalized InP nanocomposite (IMAN) selectively targets tumor sites and allows for infrared imaging in vivo. We further explored the mechanism of this active targeting. The IMAN was endocytosed and delivered in the form of microvesicles via VEGFR2-CD63 signaling. Moreover, the IMAN induced apoptosis of human myelogenous leukemia cells through the p63 pathway in vitro and in vivo. These results indicate that the IMAN may provide a new and promising chemotherapy strategy against cancer cells, particularly by its active targeting function and utility in noninvasive three-dimensional tumor imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.