Abstract

Protein glycation is a major mechanism for establishing secondary complication in diabetes mellitus. Effective inhibition of this process can prevent progression of the disorder into secondary complications. Aminoguanidine (AMG) and limonene (LM) are known protein glycation inhibitors. The aim of the present study was to demonstrate their differential mechanisms of action and to study whether combinatorial therapy can act synergistically and lower dosage, and thereby lower toxicity in treatment of secondary complications in diabetes. Glycation in the presence of 2M urea was inhibited by 23% with AMG and by 66% with LM. AMG is more effective than LM in reducing protein carbonyl formation. SPR studies revealed binding of LM reduces affinity of BSA for glucose. LM demonstrated an increase by 2°C in thermal transition in DSC studies as against reduction by 0.4°C by AMG proving that LM can effectively stabilize the protein structure. Combinatorial treatment of AMG and LM prevented α-helix to β-sheet transitions in BSA at 100μM and inhibited AGE related fluorescence and pentosidine formation by 80 and 90% respectively. The combination can reduce dosage of AMG by almost twenty times, paving the way for effective protein glycation inhibition without toxicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call