Abstract

Diabetes and obesity is associated with change in the gut microbiota, however, the reason for such transition is still unknown. The secondary complications in diabetes mainly stem from protein glycation, oxidative stress and inflammatory response. It is intended to study the correlation between gut proteins glycation and microbial dysbiosis and thereby progression to diabetes. The study was carried out through feeding high fructose to male Wistar rats and evaluating their gut microbiota. The rate of gut flora excretion via faecal matter was found to decrease on fructose feed for 7 days. Intestinal flora was drastically reduced and pathogenic succession observed. Intestinal fluorescence studies confirmed that there is heavy glycation of gut proteins. Microbes obtained from fructose fed animals could grow on glycated BSA. There was significant increase in level of TNF-α and IFN-γ providing evidence of inflammation. Though microbial dysbiosis was observed in diabetes, the cause for this remained elusive. In the present study we prove that high fructose feed and glycation of the gut proteins probably prevent adherence/survival of the gut microflora in control animals and promotes transition to a changed microflora which is capable of adhering/utilizing glycated proteins as well as high fructose. The changed microbiota, enhanced protein glycation and inflammation help in establishing insulin resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.