Abstract
Honeycomb composites are now common materials in applications where high specific stiffness is required. Previous research has found that honeycombs with polymer infills in their cells, here referred to as honeycomb-polymer composites (HPCs), exhibit effective stiffnesses greater than the honeycomb or polymer alone. Currently, the state of analytic models for predicting the elastic properties of these composites is limited, and further research is needed to better characterize the behavior of these materials. In this research, a nonlinear finite element analysis was employed to perfor2m parametric studies of a filled honeycomb unit cell with isotropic wall and infill materials. A rigid wall model was created as an upper bound on the deformable wall model’s performance, and an empty honeycomb model was employed to better understand the mechanisms of stiffness amplification. Parametric studies were completed for infill material properties and cell geometry, with the effective Young’s modulus studied in two in-plane material directions. The mechanisms by which the stiffness amplification occurs are studied, and comparisons to existing analytic models are made. It has been observed that both the volume change within the honeycomb cell under deformation and the mismatch in Poisson’s ratios between the honeycomb and infill influence the effective properties. Stiffness amplifications of over 4000 have been observed, with auxetic behavior achieved by tailoring of the HPC geometry. Additionally, the effect of large effective strains up to 10% is explored, where the cell geometry changes significantly. This research provides an important step toward understanding the design space and benefits of HPCs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have