Abstract

The paper addresses minimizing makespan by a genetic algorithm (GA) for scheduling jobs with non-identical sizes on a single-batch-processing machine. A batch-processing machine can process up to B jobs simultaneously. The processing time of a batch is equal to the longest processing time among all jobs in the batch. Two different GAs are proposed based on different encoding schemes. The first is a sequence-based GA (SGA) that generates random sequences of jobs using GA operators and applies the batch first fit heuristic to group the jobs. The second is a batch-based hybrid GA (BHGA) that generates random batches of jobs using GA operators and ensures feasibility by using knowledge of the problem based on a heuristic procedure. A greedy local search heuristic based on the problem characteristics is hybridized with a BHGA that has the ability of steering efficiently the search toward the optimal or near-optimal schedules. The performance of proposed GAs is compared with a simulated annealing (SA) approach proposed by Melouk et al. (Melouk, S., Damodaran, P. and Chang, P.Y., Minimizing makespan for single machine batch processing with non-identical job sizes using simulated annealing. Int. J. Prod. Econ., 2004, 87, 141–147) and also against a modified lower bound proposed for the problem. Computational results show that BHGA performs considerably well compared with the modified lower bound and significantly outperforms the SGA and SA in terms of both quality of solutions and required runtimes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.