Abstract

In this paper, the problem of minimising maximum completion time on a single batch processing machine is studied. A batch processing is performed on a machine which can simultaneously process several jobs as a batch. The processing time of a batch is determined by the longest processing time of jobs in the batch. The batch processing machine problem is encountered in many manufacturing systems such as burn-in operations in the semiconductor industry and heat treatment operations in the metalworking industries. Heuristics are developed by iterative decomposition of a mixed integer programming model, modified from the successive knapsack problem by Ghazvini and Dupont (1998, Minimising mean flow times criteria on a single batch processing machine with non-identical jobs sizes. International Journal of Production Economics 55: 273–280) and the waste of batch clustering algorithm by Chen, Du, and Huang (2011, Scheduling a batch processing machine with non-identical job sizes: a clustering perspective. International Journal of Production Research 49 (19): 5755–5778). Experimental results show that the suggested heuristics produce high-quality solutions comparable to those of previous heuristics in a reasonable computation time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.