Abstract
Propositional logics in general, considered as a set of sentences, can be undecidable even if they have "nice" representations, e.g., are given by a calculus. Even decidable propositional logics can be computationally complex (e.g., already intuitionistic logic is PSPACE-complete). On the other hand, finite-valued logics are computationally relatively simple - at worst NP. Moreover, finite-valued semantics are simple, and general methods for theorem proving exist. This raises the question to what extent and under what circumstances propositional logics represented in various ways can be approximated by finite-valued logics. It is shown that the minimal $m$-valued logic for which a given calculus is strongly sound can be calculated. It is also investigated under which conditions propositional logics can be characterized as the intersection of (effectively given) sequences of finite-valued logics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.