Abstract

Fundamental issues involving nuclei in the celebrated solar neutrino problem are discussed in terms of an effective field theory adapted to nuclear few-body systems, with a focus on the proton fusion process and the hep process. Our strategy in addressing these questions is to combine chiral perturbation theory -- an effective field theory of QCD -- with an accurate nuclear physics approach to arrive at a more effective effective field theory that reveals and exploits a subtle role of the chiral-symmetry scale in short-distance effects encoded in short-range nuclear correlations. Our key argument is drawn from the close analogy of the principal weak matrix element figuring in the hep process to the suppressed matrix elements in the polarized neutron-proton capture at threshold currently being measured in the laboratories.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call