Abstract
Abstract Filling with foams of honeycomb structures has been proposed as some enhancement of honeycomb-cored sandwich material systems. The present study considers aluminum honeycomb cores filled with polyvinyl chloride foams with the aim to predict their material elastic properties. The displacement-based homogeneous technique using 3D finite element analysis is applied to evaluate the effective elastic properties of foam-filled honeycomb cores. The special attention is paid to stress predictions at the skin/core interface and the stress distributions within the honeycomb cell walls. The influence of the foam filler on distribution of local stresses within the cell is examined. The FE modelling is performed with the commercial available software ABAQUS. The structural benefits of the foam-filled honeycomb cores are also discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have