Abstract
Prevention of supercooling is essential for phase change material (PCM) utilization. In this study, multi-wall carbon nano-tube (MWCNT) particles were dispersed in an organic liquid n-hexadecane used to decrease supercooling. Various surfactants were tested as additives to overcome the rapid aggregation and sedimentation of the nanoparticles in the organic liquid. Stable and homogenous dispersion was attained through surface modification of the MWCNT particles with strong acids H 2SO 4 and HNO 3, plus the addition of 1-decanol as a surfactant to the organic liquid. Thermal analysis of the n-hexadecane with well dispersed MWCNT particles at concentrations ranging from 0.1% to 10% w/w by differential scanning calorimeter (DSC) indicated that the supercooling of n-hexadecane was significantly decreased with the concentration of 0.1% and 0.5% but only slightly with the concentrations over 1.0%. It appears that well dispersed nanoparticles provided stable foreign nuclei of proper size to promote the heterogeneous nucleation process and accelerate crystallization process, thus the supercooling was significantly reduced. The obvious effects of MWCNT particles on the decrease of supercooling of n-hexadecane provide promising way of improving the performance of system energy efficiency in building cooling and heating applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.