Abstract
Thermal energy storage (TES) system is one of the best options for harvesting, storing, and saving energy for long-term or short-term use of a modern energy production system. The nano-enhanced phase change materials (NePCM) are a new type of phase change materials (PCM) formed by suspended nano-sized particles in base PCM to improve the thermophysical properties of the base PCM. The major challenge in nanoparticle dispersion in PCM, especially for solar energy applications, is its poor thermal conductivity and light transmission capability. Present research aims to address the thermal conductivity and light transmission capability issues by dispersing pristine multi-walled carbon nanotube (MWCNT) and functionalized multi-walled carbon nanotube (FMWCNT) particles in various weight concentrations (0.1, 0.3, 0.7, and 1.0%) into the salt hydrate PCM. A two-step technique was implemented to develop the NePCM for various weight percentage of MWCNT and FMWCNT. The Fourier transform infrared (FTIR) spectrum shows the MWCNT and FMWCNT nano-sized particles physically mixed well in salt hydrate PCM and without disturbing the chemical properties. The thermal conductivity of developed composites at 0.7 wt% MWCNT/S50 (S50M-0.7) and 0.7 wt% FMWCNT/S50 (S50F-0.7) are 0.78 W/mK, and 0.92 W/mK, respectively. The Differential Scanning Calorimetry (DSC) results revealed that the maximum improvement in latent heat by 14.66% and 31.17% for 0.1 wt% MWCNT/S50 (S50M-0.1) and 0.3 wt% FMWCNT/S50 (S50F-0.3) respectively. Light transmittance of S50M-0.7 and S50F-0.7 reduced to 92% and 93.49% than pure salt hydrate PCM. It exhibits the reduction in transmittance, greater improvement in solar spectrum absorption, and excellent photothermal conversion. • Study on Functionalized and non-Functionalized MWCNT enhanced PCM. • Comparative thermal performance of MWCNT and FMWCNT enhanced salt hydrate PCM. • A remarkable enhancement in thermal conductivity by 100% for S50F-0.7 • A substantial reduction in light transmittance by 93.49% for S50F-0.7 than base PCM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.