Abstract

Mass transfer coefficients along a structured packed column were experimentally determined to obtain a new correlation for dispersed phase Sherwood number based on molecular diffusivity. Then in a comparative investigation, the correlation was re-established based on effective diffusivity. The applied chemical systems were toluene/acetic acid/water (T/A/W) and butyl acetate/acetic acid/water (B/A/W). The effects of droplet size and packing height on experimental Sherwood number were also discussed. It was shown that local Sherwood number could be increased up to 188% with increasing the droplet size from 6 to 9mm in fixed dispersed phase flow rate. It was also observed that when height of packing increased from 10 to 40cm, local Sherwood number decreased by almost 48% for constant dispersed phase flow rate. The results have shown that the proposed correlation based on effective diffusivity can estimate the experimental drop Sherwood number with high accuracy (error of less than 5%). Moreover, current research shows that replacing molecular with effective diffusivity in some theoretical models can correct their estimation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.