Abstract
Since 2021, EAST tokamak has been operated with full tungsten divertors. Tungsten accumulation has been frequently observed in NBI-heated H-mode discharges, resulting in the degradation of plasma confinement performance. Control of tungsten impurity is thus critical for the maintenance of high-confinement plasmas. In this work the impact of the n = 1 resonant magnetic perturbation (RMP) on the behavior of intrinsic low- and high-Z impurities in EAST H-mode discharges are experimentally studied, utilizing high-performance extreme ultraviolet spectroscopic diagnostics. In the dedicated discharge, ELM mitigation, ELM suppression, H-L back transition, RMP penetration occurs in succession with increasing RMP current (IRMP). When IRMP is below the threshold for H-L back transition, IRMP_H-L = 2.29 kA, increasing influx of C2+ and C3+ ions and decreasing influx of C4+ and C5+ ions are observed simutaneously with enhancement of the RMP field. This opposite time behavior in the influx of C4+ and C3+ ion is then observed to be magnified during the RMP penetration phase. It indicates a impurity screening layer formed between the locations where C4+ and C3+ ions distribute during RMP application based on our previous analysis (W.M. Zhang et al 2024 Nucl. Fusion 64 086004). A large step of increase in C4+ influx after H-L back transition indicates C4+ ion mainly located at bottom of pedestal. A higher RMP coil currents threshold capable of impurity screening is found for high-Z impurity ions of Cu25+, Mo30+, W42+, i. e. 0.53–––0.75 kA, than that for C4+ and C5+, i. e. 0.33 kA. Meanwhile, it is found that comparing to C4+ and C5+ ions the decontamination effect by this impurity screening layer is more efficient for these high-Z impurity ions in plasma core region, e.g. up to 70 % reduction in the impurity density, leading to a significant reduction of radiation power. Furthermore, the continuous reduction of core high-Z impurities level both in ELM mitigation and suppression phase proved that this impurity decontamination effect by RMP field is dominant over the impact of ELM activity to core high-Z impurities transport since tungsten is frequently observed to accumulate during original ELM-free phase. Experimental results from this work would contribute to further understanding of the underlying mechanism how the RMP field impacts the impurity transport
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have