Abstract

Let k be a field of characteristic zero and f( t), g( t) be polynomials in k[ t]. For a plane curve parameterized by x= f( t), y= g( t), Abhyankar developed the notion of Taylor resultant (Mathematical Surveys and Monographs, Vol. 35, American Mathematical Society, Providence, RI, 1990) which enables one to find its singularities without knowing its defining polynomial. This concept was generalized as D-resultant by Yu and Van den Essen (Proc. Amer. Math. Soc. 125(3) (1997) 689), which works over an arbitrary field. In this paper, we extend this to a curve in affine n-space parameterized by x 1= f 1( t),…, x n = f n ( t) over an arbitrary ground field k, where f 1,…, f n ∈ k[ t]. This approach compares to the usual approach of computing the ideal of the curve first. It provides an efficient algorithm of computing the singularities of such parametric curves using Gröbner bases. Computational examples worked out by symbolic computation packages are included.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.