Abstract

Microgrids (MGs) are the most sought out and feasible solution for the present energy crisis. MG is a group of Distributed Generators (DGs) interacting with each other to provide energy to a defined local area. The inclusion of DGs into the conventional power system at various voltage levels has altered the topology of the power system and their control techniques. Hence, the MGs can no longer be considered as a traditional radial network but rather a meshed network. The control and operation of such practical MGs become a challenge, especially when operated in the islanded mode. This research paper considers a realistic meshed MG operating in an islanded mode for study. In an islanded MG, the issues of real and reactive power sharing among DGs are addressed so that the power contribution of each DG is proportional to its rating, thus preventing overload and ensuring reliable operation. A communication-based virtual impedance estimation is proposed in addition to the droop controller for proportionate real and reactive power sharing among DGs in a meshed MG. With the increased complexity of meshed MG, the proposed communication-based control scheme offers an efficient reactive power sharing between DGs without the feeder and network impedance requirements. A MATLAB simulation study proves the effectiveness of the proposed control strategy for a meshed MG with equal DG ratings and unequal DG ratings under changing load conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call