Abstract

A successful encapsulation of Keggin-type polyoxomolybdate (H3[PMo12O40], PMo12) into metal-organic framework (MOF) materials with an identical framework but distinct metal centers (ZIF-8 with Zn2+ and ZIF-67 with Co2+) was accomplished by a straightforward room-temperature procedure. The presence of Zn2+ in the composite material PMo12@ZIF-8 instead of Co2+ in PMo12@ZIF-67 caused a remarkable increase in the catalytic activity that achieved a total oxidative desulfurization of a multicomponent model diesel under moderate and friendly conditions (oxidant: H2O2 and solvent: ionic liquid, IL). Interestingly, the parent ZIF-8-based composite with the Keggin-type polyoxotungstate (H3[PW12O40], PW12), PW12@ZIF-8, did not show the relevant catalytic activity. The ZIF-type supports present an appropriate framework to accommodate active polyoxometalates (POMs) into their cavities without leaching, but the nature of the metallic center from the POM and the metal present in the ZIF framework were vital for the catalytic performance of the composite materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.