Abstract
Metal-organic framework (MOF) materials are three-dimensional structures formed by the combination of metal ions and organic ligands. So far, various typical metal organic framework materials have emerged, such as ZIF-8, MOF-5, UIO-66, etc. These traditional MOF materials have the advantages of simple synthesis, high porosity, and high stability, and have great research potential in the field of fluorescence sensing. However, MOF materials with excellent luminescent properties often involve fine regulation of organic ligands to ensure that fluorescence emission can be achieved between metal ions and organic ligands through energy transfer and photo induced electron transfer. The long synthesis cycle and cumbersome preparation process pose challenges for the research of fluorescent MOF materials. Combining MOF materials with luminescent guests is an effective way to prepare simple fluorescent chemical sensors. These luminescent guests include quantum dots, organic dyes, fluorescent nanoparticles, etc. They have the characteristic of high luminescence quantum yield, but high concentrations often lead to aggregation and collision, which in turn cause emission quenching. MOF materials with excellent porosity and specific surface area can serve as an ideal platform for encapsulating luminescent guests and preventing their aggregation. The preparation of MOF@luminescent guest composite material (MOF@LG) is easy to synthesize, which not only effectively improves the poor fluorescence performance of MOFs themselves, but also preserves the excellent fluorescence performance of luminescent guests. Composite materials often have excellent solid-state luminescence performance, making them a good choice for constructing a simple fluorescence sensing platform.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.