Abstract

ABSTRACT Polymers are highly promising materials for capturing carbon dioxide (CO2), a greenhouse gas. Hence in this work, we prepared phyllosilicate supported mesoporous polymer via reversible addition–fragmentation chain transfer (RAFT) polymerisation, which is the one among the controlled radical polymerisation. The mesoporous material anchored on dodecanethiol trithiocarbonate acts as a chain transfer agent (CTA) for the polymerisation of chloromethyl styrene and further conversion to quaternary ammonium compound which is effective to trap CO2 using tertiary amine. The synthesised porous phyllosilicate/polymer nanocomposites have been characterised by using various analytical tools. The CO2 sorption experiments were carried out by passing CO2 onto the synthesised porous phyllosilicate/polymer nanocomposites. The sorption kinetics was monitored by X-Ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR) spectra in the presence of carbonate were obtained by reaction of quaternary ammonium hydroxide and CO2. The phyllosilicate anchored macromolecular CTA (macro-CTA) and the surface-initiated polymer nanocomposites encompassed apparent surface areas of 94.5 and 26.8 m2 g−1, respectively. In addition, the total pore volumes calculated for the macro-CTA and polymer were found to be 0.27 and 0.095 cm3g−1, while the average pore sizes were 14.24 and 11.46 nm, respectively. The CO2 sorption capacity of the phyllosilicate/polymer nanocomposites, monitored at different temperatures, is the fastest for 25°C but slower for the sample treated at 50°C which may due to the dipole and quadrupole interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.