Abstract

For the structural analysis of steel-concrete composite columns, Eurocode 4 allows only cross-sections with one implemented steel profile and double symmetry. However, there are worldwide more and more examples of composite columns with more than one embedded steel profiles, like for example in the International Financial Center of Hong Kong and the Ping Anh Finance Center in Shenzhen. The common practice of analysis of such columns is to use the simple Euler-Bernoulli beam theory to describe the global behaviour. But recently, performed tests reveal that the resulting deformations exceed largely the deformations predicted by the aforementioned analytical model. The presented contribution shows a modified approach to analyse the stiffness of composite columns with multiple encased steel profiles. Based on the performed laboratory tests and numerical simulations with the finite element code Abaqus®, a new method to determine the effective stiffness is proposed. It combines a modified Timoshenko beam theory with embedded Vierendeel truss model – the VTBM model. This modified method leads to a reduced value of the effective stiffness, more realistic deformations at Ultimate Limit State and thus to a more realistic assessment of the Euler's critical buckling load.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.