Abstract

In this study, we present porous ceramics combining the antibacterial effect of copper with an integrated copper removal adsorbent. After preparing and characterizing the antibacterial copper-doped microbeads and monoliths (CuBs and CuMs), their antibacterial efficiency is probed against different nonpathogenic and pathogenic bacteria (Bacillus subtilis, Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa). An antibacterial efficiency of 100% is reached within 15 min to 3 h for all tested strains under static conditions. Dynamic tests with B. subtilis and E. coli showed high antibacterial efficiency up to 99.93% even at continuous flux. To avoid any adverse effects on the environment, continuous removal of released copper-ions is accomplished with porous, high surface area monolithic adsorbents (MAds). MAds are prepared similarly to the CuMs but without adding copper during the manufacturing process. MAds reduce the amount of copper released from the CuMs ≥ 99% during the first 15 min, ≥90% up to 2 h, and after 22 h of continuous filtration up to 56% of the released copper is removed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call