Abstract

Vehicle stability and active safety control depend heavily on tyre forces available on each wheel of a vehicle. Since tyre forces are strongly affected by the tyre–road friction coefficient, it is crucial to optimise the use of the adhesion limits of the tyres. This study presents a hybrid method to identify the road friction limitation; it contributes significantly to active vehicle safety. A hybrid estimator is developed based on the three degrees-of-freedom vehicle model, which considers longitudinal, lateral and yaw motions. The proposed hybrid estimator includes two sub-estimators: one is the vehicle state information estimator using the unscented Kalman filter and another is the integrated road friction estimator. By connecting two sub-estimators simultaneously, the proposed algorithm can effectively estimate the road friction coefficient. The performance of the proposed estimation algorithm is validated in CarSim/Matlab co-simulation environment under three different road conditions (high-μ, low-μ and mixed-μ). Simulation results show that the proposed estimator can assess vehicle states and road friction coefficient with good accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.