Abstract

Developing a new master mold-based patterning technology that can be used to accurately, precisely, and uniformly create large-area micropatterns while controlling the micropatterns of curved structures is essential for promoting innovative developments in various application fields. This study develops a new top-down lithographic process that can effectively produce structural patterns with high curvatures by growing isolated microbubbles in the master pattern holes. The isolated air-pocket lithography (IAL) we developed is based on the controlled behavior of micrometer-sized air pockets trapped between the grooves of the master pattern and the curable polymer. We successfully fabricated a concave array polydimethylsiloxane (PDMS) film and a convex array polymer film. In addition, the IAL mechanism was proven by confirming the expansion process of micrometer-sized air pockets trapped between the deep groove of the silicon master pattern and the PDMS coating film by using optical microscopy images. We successfully obtained complex three-dimensional structural patterns containing both 3D hollow spherical concave and ring-shaped two-dimensional convex patterns. This simple, fast, and effective high-curvature patterning technique is expected to provide innovative solutions for future applications such as nanoelectronics, optical devices, displays, and photovoltaics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call