Abstract

In the leak-before-break (LBB) design of nuclear power plants, crack opening displacement (COD) is an essential element for determining the length of the leakage size crack. Recent researches regarding the evaluation of COD have indicated that the current practice of the LBB evaluation without consideration of the pressure induced bending (PIB) restraint overestimates COD, which in turn gives non-conservative results. Under a free-ended boundary condition, however, the applied moment at cracked section also can be overestimated, which has conservative effects on LBB evaluation. Therefore, it is necessary to evaluate pipe restraint effects on the applied moment as well as on COD to keep the constancy. In this paper, an evaluation method for the effect of the PIB restraint on COD and an effective applied moment (=crack driving force) at cracked section was developed. Both the linear elastic and elastic–plastic behaviors of the crack were considered. By comparing the behaviors with 3-D finite element analysis results from earlier studies, it was confirmed that the proposed methods make accurate estimations of the PIB restraint effect on COD. Next, the applicability of the proposed method to other types of external loading conditions was examined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call