Abstract

Eco-friendly and sustainable plant disease management employing Trichoderma spp. as bioagents is an economically feasible and ecologically sustainable approach. Therefore, their use in agriculture should be encouraged. The two main goals of the present study were to evaluate the abilities of two Trichoderma isolates to prevent Fusarium wilt disease, which is caused by Fusarium solani, in vitro and under greenhouse conditions, as well as their potential as biofertilizers to enhance cherry tomato growth and development. The results of a dual culture test revealed that T. viride and T. harzianum are antagonistic against the F. solani pathogen. The antagonism mechanisms include competition for nutrients and space, mycoparasitism, and antibiosis, according to scanning electron microscopy (SEM) findings. Additionally, T. harzianum reduced the mycelial growth of F. solani by 78.0%, whereas T. viride inhibited the growth by 61.2%, 10 days post-inoculation. In a greenhouse experiment, cherry tomato plants treated with each of these antagonistic Trichoderma isolates separately or in combination significantly suppressed Fusarium wilt disease, improved plant growth parameters, increased macro- and micronutrients uptake, and increased the content of photosynthetic pigments and total phenols. In conclusion, effective applications of Trichoderma isolates have the potential to mitigate Fusarium wilt disease, which is caused by F. solani in cherry tomato plants, while simultaneously promoting the growth and development of cherry tomatoes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call