Abstract
Quantum state tomography (QST) of electron-nuclear spins of nitrogen-vacancy (NV) center in diamond commonly requires a sequence of population flipping operations and frequent calibration of basis states by fluorescence photon-counting. Here, we realize an effective and robust quantum state tomography of electron-nuclear spins based on time-resolved fluorescence, which can enhance the signal-to-noise ratio between different basis states up to 29.6% compared to the photon-counting method. Meanwhile, our method can directly obtain the population of four basis states with only one measurement, which significantly improves the efficiency of tomography. Furthermore, the photon count rate fluctuation of time-resolved fluorescence can be reduced to the standard quantum limit by normalization operation, indicating that the time-resolved method is calibration-free. This method could be easily applied to multi-nuclear spins of NV center in diamond and extended to other solid-state spin systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.