Abstract

To explore an alternative adsorbent, a type of activated semi-coke was prepared by the activation with NaOH. The adsorption ability in removing phenol from aqueous solutions was explored through the utilization of a batch adsorption process. The effects of the initial phenol concentration, the adsorbent dosage, and the contact time on the adsorption capacity of the activated semi-coke were investigated. It was shown that the adsorption reached equilibrium in 60 min and the removal efficiency increased with the corresponding increase in the initial phenol concentration, activated semi-coke dosage, and contact time. The surface structure properties of the activated semi-coke were characterized by N2 adsorption isotherms. It was found that the activated semi-coke samples were essentially macroporous and that the BET surface area of activated semi-coke was 354.21 m2 g−1. Scanning electron microscopy images indicated that the surface of the activated semi-coke possessed a high development of pores. The adsorption kinetics were investigated according to four theoretical models (pseudofirst order, pseudosecond order, intraparticle diffusion, and fractionary order), and the adsorption process was well-defined by the pseudosecond order kinetics model. The adsorption equilibrium of phenol onto the activated semi-coke was determined. Experimental data were fitted to three two-parameter models (Langmuir, Freundlich, and Temkin) and three three-parameter models (Redlich–Peterson, Sips and Toth). The analysis indicated that the experimental data of the adsorption more closely resembled the three-parameter models compared to the two-parameter models, and the Sips isotherm model was determined to be the most appropriate model for the adsorption of phenol from aqueous solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call