Abstract

This study was performed to measure the potential utilization of agro-waste to generate nanoparticles and evaluate the capability of it’s as a low cost adsorbent for removal of phenol. Adsorption studies for phenol removal by using Aloe vera and Mesquite leaves nanoparticles carried out under various experimental conditions including pH, nano-bioadsorbent dosage, phenol concentration, contact time, temperature and ionic strength in a batch reactor. The adsorption kinetics by pseudo-first order and pseudo-second order models and isotherm technique by Freundlich and Langmuir isotherms models were applied. The results showed that the rate of phenol adsorption increases in both nano-bioadsorbents with an increase of pH up to 7, adsorbent dosage up to 0.08 gL-1, phenol initial concentration up to 32 mgL-1, contact time up to 60 min and raising in temperature. The adsorption data followed the Freundlich isotherm model. The kinetic studies indicated that the adsorption of phenol with nano-bioadsorbents was best described by the pseudo second order kinetics. We found that the nanoparticles prepared from Aloe vera and Mesquite leaves had a high capability in adsorption of phenol, beside the point that they could be accessed at a low cost. These agro-wastes can be used to remove phenol from aqueous environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call