Abstract
The aim of this research was to develop pure predictive models in order to provide 24 h advance forecasts of the hourly ozone concentration for the rural site of Carcagente (Valencia, Spain) and the urban sites of Paterna (Valencia, Spain) and Alcoy (Alicante, Spain) over 4 years from 1996 to 1999. The peculiarity of the model presented here is that it uses past and previously predicted information of inputs exclusively, thus being this is the first genuine 24 h advance O 3 predictive model with neural networks. We used autoregressive-moving average with exogenous inputs (ARMAX), multilayer perceptrons and FIR neural networks. Five performance measures yield reasonably good results in the three sampling sites. The results indicate that the models developed predict the O 3 time series more effectively compared with previous procedures based on dynamical system theory. The neural network's models yield better results than linear models when exogenous inputs are included. The prediction accuracy of these models enables, for the first time, an effective warning to be made in cases where EU public information threshold values are exceeded.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.