Abstract

Co-gasification is crucial for large-scale clean conversion of coal and sludge. In this study, the effects of municipal sewage sludge (MSS, Fe2O3:48.11 %) and pharmaceutical sewage sludge (PSS, Fe2O3: 67.80 %) on ash fusion temperature (AFT) of high AFT Xiangyuan coal (XY) were explored using an AFT analysis, X-ray fluorescence spectrometry, X-ray diffraction, scanning electronic microscopy, and thermodynamics FactSage calculation. The results showed that when MSS or PSS ash mass ratios reached 20 % or 16 % (for XY mixtures, the mass ratio of MSS or PSS should be >5.81 wt% or 5.07 wt%), respectively, the AFT met the requirement of liquid-slag discharge for entrained-flow bed gasification. Under a reducing atmosphere (6:4, CO/CO2, volume ratio), Fe2+ destroyed the bridging-oxygen bonds in the network structure and generated low melting-point (MP) hercynite (FeAl2O4). This resulted in the AFT decreases in the XY mixtures with the additions of PSS or MSS. Meanwhile, the high calcium content (CaO: 13.40 %) easily reacted with Al2O3 and SiO2 and formed anorthite (CaAl2SiO8), which inhibited high-MP mullite formation and decreased the mixed XY AFT. With the increasing SS mass ratio, the surface of the ash sample and thermodynamic FactSage calculation were in good agreement with the experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.