Abstract

This work studies the effect of the evacuation mode of the solvent to optimize the catalytic performances of sulfated zirconia doped with nickel prepared by the sol gel method in one step. Aerogel and xerogel catalysts exhibit different textural, structural and catalytic properties at various calcination temperatures. Aerogels, obtained by drying under supercritical conditions of solvent, exhibit a developed specific surface area and stabilize zirconia tetragonal phase before heating and even at high calcination temperature. However, xerogels obtained by ordinary drying in an oven are amorphous and has a low surface area and weak porosity. XPS spectroscopy shows that the nickel in aerogels is more reducible than those in xerogels. Aerogels exhibit higher activity than the xerogels, in the n-hexane isomerization reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.