Abstract

To enhance the thermal properties of ultrahigh molecular weight (UHMW) (viscosity-average molecular weight of 6 × 106) polyethylene (PE) gel film, this was crosslinked by dicumyl peroxide (DCP) during a high-temperature zone drawing, which is effective to orient film. Through a series of experiments, it turned out that crosslinking actualized by an optimum amount of DCP and high-temperature zone drawing technique caused significant changes in the structure and properties of UHMW PE gel film. That is, crosslinking increased storage modulus of UHMW PE gel film at 25°C, resulting in improving thermal properties of the film. On the contrary, the crosslinking effect played a hindering role in raising the draw ratio of UHMW PE gel film. Maximum storage modulus of 165 GPa at 25°C could be obtained at the draw ratio of 324 of uncrosslinked homo-PE gel film. In the case of crosslinked PE gel film, the highest storage modulus at 25°C reached 65 GPa at maximum draw ratio of 150. Crosslinked film exhibited high modulus, even at 190°C, to some extent, while uncrosslinked homo-PE gel film was molten completely at 150°C. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 1583–1590, 1997

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.