Abstract

Abstract In this study, the effect of zinc oxide (ZnO) incorporation on the properties of Hydroxyapatite (HAp)/Poly(methyl methacrylate) (PMMA)/ZnO based composite bone scaffold is investigated. HAp is derived from calcination of bovine bone bio-waste and ZnO is synthesized by direct precipitation technique. Porous scaffolds are developed by gas foaming process using ammonium bicarbonate as the foaming agent and adding ZnO nanoparticles (NPs) at 2.5, 5, 7.5 and 10% (w/w) respectively. Incorporation of ZnO up to 5% (w/w) is found to significantly enhance the porosity, compressive strength, thermal stability and swelling properties of the developed scaffolds. In-vitro bioactivity and biodegradability assessment using simulated body fluid (SBF) show improved results of 5% ZnO loaded scaffolds. Furthermore, the composite scaffold show enhanced cytocompatibility during the in vitro cytotoxicity test performed using XTT assay. A comprehensive study on the scaffold properties shows that 5% ZnO composite scaffold exhibits the best-optimized properties suitable for bone tissue engineering applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call