Abstract

Optical and photo-electrical properties of ZnO–CdO films with the ratio of Zn/Cd=1:0, 3:1, 1:1, 1:3 and 0:1 has been studied. XRD study confirms the combination of hexagonal ZnO and cubic CdO phase present in the polycrystalline sample. Atomic force microscopy results indicate that the crystal grains are agglomerated and surface roughness enhanced due to higher Cd concentration in ZnO. From optical studies, it is found that the transmittance and the band gap decreased as Cd content increased. Photoluminescence studies on ZnO–CdO films showed intense near-band edge emissions at room temperature and is attributed to recombination of excitons localized within band tail states likely caused by non-uniform Cd distribution in ZnO–CdO matrix. The dispersion of refractive index was analyzed by the Wemple–DiDomenico single-oscillator model. The third-order nonlinear polarizability is found high with higher concentration of cadmium at higher photon energies. Some other optical parameters such as dissipation factor, optical conductivity, interband transition strength, surface and volume energy loss have been calculated depending on dielectric constant evaluated from optical data. Finally, photoconductive gain and carrier lifetime have been calculated and found dependent on Zn/Cd ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.