Abstract
The electrochemical behavior of brasses with various Zn content (5.5–38 mass%) and brass (Cu–38Zn) with different Pb contents (1–3.4 mass%) in 0.6 M NaCl was investigated. The effects of temperature, immersion time, and concentration of chloride ions on the behavior of the different alloys were studied. The pitting corrosion behavior of Cu–Zn alloys and leaded–brass alloys in 0.6 M NaCl solution was also investigated. Open-circuit potential measurements (OCP), polarization techniques and electrochemical impedance spectroscopy (EIS) were used. The results show that the increase in the Zn content increases the corrosion rate of the brass alloys in chloride solutions, while the increase of Pb content in Cu–38Zn–Pb decreases the corrosion rate of the alloy. Long immersion time of the alloys in the aqueous electrolyte improves their stability due to the formation of passive film on the alloy surface. The breakdown potential is shifted to more negative direction with increasing the Zn content, whereas it shifts towards positive values with increasing Pb content. Equivalent circuit model for the electrode/electrolyte interface under different conditions was proposed to illustrate the electrochemical processes taking place at the interface. The electrochemical behavior of the different alloys was discussed in view of the fitting results.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have