Abstract

The influence of doping the transition metal Zn(II) on potassium hydrogen phthalate (KHP) crystals has been studied. A close observation of FT-IR and XRD profiles of doped and undoped samples reveals some minor structural variations. It appears that the crystal undergoes considerable lattice stress as a result of doping the bivalent zinc. Furthermore, the possibility of cation vacancies aroused owing to the substitution of K1+ by Zn2+ could result in a defective crystal system. Energy dispersive spectra reveal the incorporation of Zn(II) in the crystalline matrix of KHP crystals. Differential scanning calorimetry (DSC) and TG-DTA studies reveal the purity of the sample and no decomposition is observed below the melting point. Small quantity additions of Zn(II) enhance the fluorescence intensity of KHP crystals. The doping results in morphological changes and significantly improves the second harmonic generation (SHG) efficiency of the host crystal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.