Abstract

Sulphonation of maleated copoly (ethylen/propylen/diene), followed by its neutralisation by sodium hydroxide produces an ionomer containing both carboxylate and sulphonate anions on the backbone. Addition of zinc stearate lowers the melt viscosity of the ionomer, which is higher than the corresponding non-ionomer. Dynamic mechanical thermal analysis shows that zinc stearate acts as a low reinforcing filler under ambient conditions and as a plasticiser above 100°C (i.e. above the melting point of zinc stearate). For example, incorporation of zinc stearate causes an increase in storage modulus E′ at 25°C, but a sharp decrease in E′ at 110°C. Furthermore, the plot of tan δ v. temperature reveals that tan δ at the low glass–rubber transition temperature Tg decreases, while tan δ at the high temperature ionic relaxation temperature Ti increases in the presence of zinc stearate. Incorporation of carbon black lowers tan δat Tg and increases tan δ at Ti, thus strengthening the biphasic structure of the ionomer. The ionomer shows higher tensile strength and modulus than the corresponding non-ionomer. Addition of zinc stearate increases the tensile strength and elongation at break, with marginal decrease in modulus. Carbon black increases the stress–strain properties of the zinc stearate filled ionomer. Reprocessability studies of the ionomer filled with zinc stearate and carbon black show that the material can be recycled without a decrease in properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call