Abstract

Addition of yttrium in zirconium causes precipitates of yttrium, which form two types of particles and are oxidized upon heat treatment. One type of particles with sub-micrometer scale sizes has a low population, whereas the other with nano scale sizes has a high population and cluster distribution. Owing to strong affinity of yttrium to hydrogen, the nanoparticles, mostly within the grains of the Zr–Y alloy, attract nucleation of hydrides at the clusters of the nanoparticles and cause preferential distribution of intragranular hydrides. In comparison with that of Zr, additional nanoparticles in the Zr–Y alloy impede further growth of hydride precipitates during hydriding. It is deduced that the impediment of growing hydride precipitates by the nanoparticles is developed during an auto-catalytic nucleation process, which leads to formation of thin and intragranular hydrides, favorable to mitigation of hydride embrittlement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.