Abstract
Orthogonal frequency division multiplexing (OFDM) was endorsed in recent digital communication technologies such as 4G-LTE to cope with multipath fading channel, and respond to increasingly high data rate demand. Despite its attractive features, OFDM based systems suffers from High Peak to Average Power Ratio (PAPR) which limits its application to a certain level. In this paper, the peak windowing technique is investigated in details and the effect of window size on PAPR reduction and BER improvement performance is the main analysis concern by taking into consideration system circuitry non-linearity characteristics. The performance of five different peak windowing functions on PAPR reduction performance was analyzed, Individual window function performance for PAPR reduction were evaluated and the window function with the optimum performance over others was selected and used to assess the effect of window size of peak windowing for PAPR reduction in LTE system with non-linear High power Amplifier (HPA). The simulation results and analysis of proposed approach shows that Hann window function of window size ws=8 provide a 2.094dB PAPR reduction from 10.207dB to 8.113dB at 10-2 probability, with BER degradation of 0.0065dB and 0.214dB at 10-1 and 10-2probabilty respectively. A Comparative performance analysis of the proposed algorithm with other allied recent proposed approaches on PAPR reduction such as Gaussian windowing was carried out; a good performance of the proposed method is observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.