Abstract

We examine the consequences of the wettability properties on the dynamics of gravity drainage in porous media. The relation between the wetting properties at the pore scale and the macroscale hydrodynamics is studied. Model porous media consisting of hydrophilic and hydrophobic glass beads or sand with well defined wetting properties, are prepared for this study. Gravity drainage experiments with air displacing water (two-phase flow), are performed for different Bond numbers, and using different techniques such as gamma-ray densitometry, magnetic resonance imaging (MRI) and weight measurements. The dynamics of drainage is found to be different for hydrophilic and hydrophobic porous media in the transition zone (funicular regime). Moreover, for hydrophilic (water-wet) porous media, MRI experiments reveal the importance of drainage through the continuous water film, which leads to an increase of the residual quantity of water in the transition zone with time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call