Abstract

Direct chemical bonding of biomolecules to the surface of chemically inert polymers such as polydimethylsiloxane (PDMS) is not easily achieved. Therefore, pre-activation of such materials, followed by attachment of the biomolecule is necessary.This paper describes a procedure to functionalize a PDMS surface by oxygen-based plasma followed by the adhesion of collagen type I for the preparation of adhesive-free bilayer composite intended as skin substitute. Plasma treatments between 40 and 120W for 5 to 15min were used and the extent of surface modification was followed by contact angle, Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM) and adhesion test. It was found that as the plasma power and time were increased, PDMS contact angle decreased while surface roughness increased as revealed by SEM and AFM. The formation of oxygen-containing functional groups at the surface was detected by FTIR. T-peel tests, performed on PDMS treated at 80W/13min and covered with collagen showed maximum peel strength of 0.1N/mm which was 3 times higher than that measured for the untreated bilayer composite. The observed enhancement in the adhesion strength was attributed to the increased mechanical interlocking driven by the increased roughness and the formation of hydrophilic functional groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.