Abstract
Content and density of soil organic carbon (SOC) and labile and stable SOC fractions in peat mire soil in wetland, soybean field and rice paddy field reclaimed from the wetland around Xingkai Lake in Northeast China were studied. Studies were designed to investigate the impact of reclamation of wetland for soybean and rice farming on stability of SOC. After reclamation, SOC content and density in the top 0–30 cm soil layer decreased, and SOC content and density in soybean field were higher than that in paddy field. Content and density of labile SOC fractions also decreased, and density of labile SOC fractions and their ratios with SOC in soybean field were lower than that observed in paddy field. In the 0–30 cm soil layer, densities of labile SOC fractions, namely, dissolved organic carbon (DOC), microbial biomass carbon (MBC), readily oxidized carbon (ROC) and readily mineralized carbon (RMC), in both soybean field and paddy field were all found to be lower than those in wetland by 34.00% and 13.83%, 51.74% and 35.13%, 62.24% and 59.00%, and 64.24% and 17.86%, respectively. After reclamation, SOC density of micro-aggregates (< 0.25 mm) as a stable SOC fraction and its ratio with SOC in 0–5, 5–10, 10–20 and 20–30 cm soil layers increased. SOC density of micro-aggregates in the 0–30 cm soil layer in soybean field was 50.83% higher than that in paddy field. Due to reclamation, SOC density and labile SOC fraction density decreased, but after reclamation, most SOC was stored in a more complex and stable form. Soybean farming is more friendly for sustainable SOC residence in the soils than rice farming.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have