Abstract

The effectiveness of welding with a trailing heat sink in reducing the angular distortion of a weld has been experimentally investigated with focus on the cooling position. A numerical model of welding with a trailing heat sink is constructed through the comparison of measured values of weld penetration, thermal cycles and angular distortion with those calculated. On the basis of this model, the effect of welding heat input conditions on the reduction in angular distortion is discussed to evaluate the versatility of welding with a trailing heat sink. The results indicate that the choice of an appropriate cooling position behind the welding heat source is essential for the effective reduction in angular distortion. The reduction in angular distortion by the heat sink at the appropriate cooling position increases with the heat input parameter Qnet/h, where Qnet is the weld heat input and h is the thickness of the plate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call