Abstract

Much of the understanding of bulk liquids has progressed through study of the limiting case in which molecules interact via purely repulsive forces, such as a hard-core or "repulsive ramp" potential. In the same spirit, we report progress on the understanding of confined water by examining the behavior of waterlike molecules interacting with planar walls via purely repulsive forces and compare our results with those obtained for Lennard-Jones (LJ) interactions between the molecules and the walls. Specifically, we perform molecular dynamics simulations of 512 waterlike molecules interacting via the TIP5P potential and confined between two smooth planar walls that are separated by 1.1nm . At this separation, there are either two or three molecular layers of water, depending on density. We study two different forms of repulsive confinement, when the water-wall interaction potential is either (i) 1r;{9} or (ii) a WCA-like repulsive potential. We find that the thermodynamic, dynamic, and structural properties of the liquid in purely repulsive confinements qualitatively match those for a system with a pure LJ attraction to the wall. In previous studies that include attractions, freezing into monolayer or trilayer ice was seen for this wall separation. Using the same separation as these previous studies, we find that the crystal state is not stable with 1r;{9} repulsive walls but is stable with WCA-like repulsive confinement. However, by carefully adjusting the separation of the plates with 1r;{9} repulsive interactions so that the effective space available to the molecules is the same as that for LJ confinement, we find that the same crystal phases are stable. This result emphasizes the importance of comparing systems only using the same effective confinement, which may differ from the geometric separation of the confining surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.