Abstract

This research investigates the effect of surface roughness, water temperature, and pH value on the wettability behaviour of copper surfaces. An electron beam physical vapour deposition technique was used to fabricate 25, 50, and 75 nm thin films of copper on the surface of copper substrates. Surface topographical analysis, of the uncoated and coated samples, was performed using an atomic force microscopy device to observe the changes in surface microstructure. A goniometer device was then employed to examine the surface wettability of the samples by obtaining the static contact angle between the liquid and the attached surface using the sessile drops technique. Waters of pH 4, 7, and 9 were employed as the contact angle testing fluids at a set of fixed temperatures that ranged from 20°C to 60°C. It was found that increasing the deposited film thickness reduces the surface roughness of the as-prepared copper surfaces and thus causing the surface wettability to diverge from its initial hydrophobic nature towards the hydrophilic behaviour region. A similar divergence behaviour was seen with the rise in temperature of water of pH 4, and 9. In contrast, the water of pH 7, when tested on the uncoated surface, ceased to reach a contact angle below 90o. It is believed that the observed changes in surface wettability behaviour is directly linked to the liquid temperature, pH value, surface roughness, along with the Hofmeister effect between the water and the surface in contact.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.