Abstract
Traditional theories of long-range protein electron transfer describe the reaction rate in terms of the tunneling distance and the reaction free energy. They do not recognize two physical effects: (i) local wetting of the active site by hydration water and (ii) protein identity affecting the rate through dynamics and flexibility. We find, by molecular dynamics simulations, a significant, ∼25 times, slowing down of the rate of protein electron transfer upon deuteration. H/D substitution changes the rate constant pre-exponential factor in the regime of electron transfer controlled by medium dynamics. Switching from light to heavy water increases the effective medium relaxation time. The effect is caused by both a global change in the flexibility of the protein backbone and locally stronger hydrogen bonds to charged residues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.