Abstract

Electron transfer theory is used to explore the size-dependence of electron transfer (ET) between dithiol-bridged quantum dots (QDs) and make predictions that can be tested experimentally. Electronic couplings, electronic densities of states, and reaction-free energies are all found to be size-dependent and to influence the ET rates. As the acceptor QD radius grows at fixed edge-to-edge donor–acceptor distance, the reaction-free energy becomes more negative. As a result, both electron and hole transfer rates show a peak as a function of acceptor radius for donor radii ranging from 9.5 to 21.5 A; however, this rate maximum as a function of radius is weaker than that observed in molecules, since the increasing acceptor density of states partially compensates both the Marcus inverted effect and the decreased electronic coupling with increasing radius. The electronic coupling decreases as the donor radius grows because the wave function probability density per surface atom decreases and the acceptor density o...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.